Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer's disease.
نویسندگان
چکیده
Neuropathological studies suggest that the basal forebrain cholinergic system (BFCS) is affected in Alzheimer's disease (AD), but there is no in vivo evidence of early damage to this system in subjects at high risk of developing AD. Here, we found that mild cognitive impairment (MCI) patients exhibited significant volume reduction of the nucleus basalis of Meynert (NbM) using recently developed probabilistic maps of the BFCS space. In addition, volumes of different magnocellular compartments varied significantly with regional gray matter atrophy in regions known to be affected by AD and were found to correlate with cognitive decline in MCI patients. Bilateral reductions of the horizontal nucleus of the diagonal band of Broca (Ch3) and frontal lobe (medial frontal, orbital, subcallosal gyrus, anterior cingulate, and middle frontal gyrus) were significantly associated with a global decline in cognitive status, whereas volume reduction of the posterior compartment of Ch4 (NbM) and temporal lobe (including hippocampus, entorhinal cortex, and amygdala) were associated with impaired delayed recall in MCI patients. These findings establish, for the first time, a link between degeneration of specific cholinergic compartments of the BFCS and cognitive-related deficits in subjects at high risk of developing AD.
منابع مشابه
Cholinergic neuropathology in a mouse model of Alzheimer's disease
Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...
متن کاملCholinergic neuropathology in a mouse model of Alzheimer's disease
Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...
متن کاملIncreased basal forebrain metabolism in mild cognitive impairment: an evidence for brain reserve in incipient dementia.
Cholinergic dysfunction is well known to significantly contribute to the cognitive decline in Alzheimer's disease (AD). However, it has not been clarified whether the cholinergic dysfunction is a primary event or a retrograde event secondary to neuronal loss of the cholinergic targets. Analysis of the in vivo neuronal activity of the basal forebrain in the early stages of AD could yield more in...
متن کاملBasal forebrain atrophy correlates with amyloid β burden in Alzheimer's disease
The brains of patients suffering from Alzheimer's disease (AD) have three classical pathological hallmarks: amyloid-beta (Aβ) plaques, tau tangles, and neurodegeneration, including that of cholinergic neurons of the basal forebrain. However the relationship between Aβ burden and basal forebrain degeneration has not been extensively studied. To investigate this association, basal forebrain volum...
متن کاملThe cholinergic system in mild cognitive impairment and Alzheimer's disease: an in vivo MRI and DTI study.
Few studies have investigated in vivo changes of the cholinergic basal forebrain in Alzheimer's disease (AD) and amnestic mild cognitive impairment (MCI), an at risk stage of AD. Even less is known about alterations of cortical projecting fiber tracts associated with basal forebrain atrophy. In this study, we determined regional atrophy within the basal forebrain in 21 patients with AD and 16 s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2010